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A random-bond Blume-Capel model is proposed in order to study the ternary FeNiMn and FeAlMn alloys.
The extended mean-field renormalization group approach and a variational procedure based on Bogoliubov
inequality for the free energy are employed in the pair approximation. The phase diagrams are obtained for a
symmetric distribution as well as for asymmetric distributions compatible to these alloys. The obtained phase
diagram for the FeNiMn system is in a much better accord with the experimental data than the previous
traditional mean-field renormalization group applied to the Ising model, mainly concerning the spin-glass and
antiferromagnetic phases. Better results are also achieved for the order parameter of the FeAlMn alloys.
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I. INTRODUCTION

Mechanical, corrosion/oxidation resistance, structural,
and magnetic properties of ternary alloys have been hardly
investigated in the past. The mechanical and corrosion/
oxidation properties are useful, for instance, in applications
to obtain stainless steel.!> On the other hand, the magnetic
and structural properties, which are the subject of this work,
have been extensively studied by Mdssbauer spectroscopy,
x-ray diffraction, and magnetic susceptibility for FeNiMn
alloys*~7 and FeAIMn alloys.®~!! The FeNiMn alloys are sys-
tems in which an atomic spin can interact with its neighbor
atoms given an effective exchange interaction.*> This inter-
action can be positive, negative, or nearly zero; therefore,
paramagnetic (P), ferromagnetic (F), antiferromagnetic (AF),
pure-spin glass (SG), and reentrant-spin glass (RSG) phases
can be obtained and have already been experimentally re-
ported in the literature.>® Concerning the FeAIMn alloys it
has been shown that these systems exhibit an antiferromag-
netic behavior with a nearly constant mean hyperfine field of

H=26 kOe, in the composition range given by 0.5<p
<0.65 and 0<¢<<0.075, where p and ¢ are, respectively,
the iron and aluminum concentrations of a general
Fe,Al Mn, alloy, where x=1-p—q.’

In order to explain some of the magnetic properties of
these alloys it has been used well-known Ising-like models in
both diluted and competitive versions.”$12-14 An analytical
treatment based on Bogoliubov procedure for the free energy
in the pair approximation,'> as well as mean-field renormal-
ization group approaches,'®!7 have been employed and quite
good agreement with the experimental data have been
achieved.

So far, the proposed theoretical fittings have been based
on a spin S=1/2 Ising model,'®!® with the presence of an
isotropic bilinear exchange interaction J;; by considering an
adequate probability distribution P(J;;), which reasonably
explains the continuous transition exhibited by these alloys
in the disordered phase.”®!? Although the bond diluted prob-
lem given by a distribution function P(J;;) is simpler to be
done than the actual site dilution considered, for instance, in
Ref. 13, the theoretical results are qualitative the same. The
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comparison between the experimental data and the theoreti-
cal fittings have been, at least, reasonable, but there are still
slight discrepancies in the behavior of the reduced mean hy-
perfine field as a function of Al, Mn, or Fe concentration for
FeAlMn alloys, as well as some severe disagreements re-
garding the fittings of the spin-glass transition for the FeN-
iMn alloys. These disagreements could be associated to the
magnetic anisotropy which is present in many magnetic ma-
terials and that is not taken into account in the Ising model.
This is, in fact, the point we would like to address in the
present study.

The thermodynamic properties of a magnetic system are
subjected to electrostatic interactions due to the neighboring
charges. It has long been known that these interactions, at
least in first approximation, could be simulated by introduc-
ing a crystal field (CF) or zero-field splitting (ZFS) A.202!
The symmetry and strength of A affect the electronic levels
of the system.?? CF reduces the degeneracy (since there is no
preferred orientation of the angular momentum and therefore
no preferred orientation of the magnetic moment due to spin)
of the electronic levels for two correlated electron spins in
zero-field systems (ignoring the electron exchange interac-
tion and only considering the magnetic interactions, for this
reason the ZFS name) with S=1 and causes magnetic
anisotropy.>2>

In order to try to explain the discrepancies exhibited by
the reduced mean hyperfine field as a function of Al, Mn, or
Fe concentration for FeAlMn alloys and the spin-glass tran-
sition curve of FeNiMn system, and keeping in mind the CF
or ZFS, as well as the electron exchange interaction, we in-
tend to use a spin S=1 model in the new theoretical fittings.
This system, which is an extension of the Ising model, has
been introduced by Blume and Capel (BC)?%?’ in the context
of tricritical phenomena. As we will shortly see this new
model for such alloys gives remarkable account for the dis-
crepancies previously obtained from the Ising spin system.

Thus, we consider a type of competing random-bond
Blume-Capel model which is presented in Sec. II. In order to
treat the continuous transitions of these systems we employ
the extended mean-field renormalization group approach that
is outlined in Sec. III. The results for the phase diagram by
considering the symmetric probability distribution is pre-

©2009 The American Physical Society


http://dx.doi.org/10.1103/PhysRevB.80.014427

PENA LARA et al.

sented in Sec. IV, while the application to the physical real-
ization of FeNiMn alloys is discussed in Sec. V. In Sec. VI
we report some fittings of the model applied to the FeAlMn
disordered alloys. Some final comments and remarks are
summarized in Sec. VII. Appendices A and B are devoted to
convey some of the final theoretical expressions for the cor-
responding physical realizations.

II. RANDOM SPIN-S BLUME-CAPEL MODEL

In a magnetic system, we can have several kinds of inter-
actions: spin-spin coupling, spin-orbit coupling, orbit-lattice
coupling, etc. The spin-spin coupling is strong and keeps
neighboring spins parallel or antiparallel. The spin-orbit cou-
pling is related to the crystal anisotropy, i.e., the magnetic
properties depend on the direction in which they are
measured.”> The orbit-lattice coupling is also strong and
keeps the orientations of the orbits fixed strongly to the lat-
tice. Of these couplings we are interested here in the first
two, because the first coupling is related with ferromag-
netism (J;;>0) or antiferromagnetism (J;<<0) and the sec-
ond with the ZFS or CF.

The idea to remove the degeneracy for systems with spin
S=1 in the absence of an applied field arises from spin-orbit
coupling of the ground state with empty excited states (for
S=1, the ground-state mg=0, =1 is splitting into a singlet,
mg=0, and a doublet, mg= = 1). The theory that tries to ex-
plain this phenomenology was developed by van Vleck?*2!
and Bethe,?? and is known as crystal-field theory (CFT). This
theory describes the effect of the electrical field of neighbor-
ing ions on the energies of the valence orbitals of an ion in a
crystal and it can be used to predict chemical properties,
kinetic properties, reaction mechanisms, magnetic and spec-
tral properties, and thermodynamic data.

We take into account a reported theory for magnetic
anisotropy?® which assumes a Hamiltonian with exchange
and crystal-field term given by

O'i'~Li"0-j+0'i']2'0-i’

Exchange Crystal field

where the first term describes an interaction between spins o;
and g; at two sites, and the second term involves the spin at
only one site. The parameter J;; and the third-rank tensor D
describe the strength of the two-ion exchange interaction and
single-ion spin-spin interaction, respectively.

Instead of working with tensors and keeping in mind the
Bethe-Slater curve,?® we will assume that the electronic
ground state of these compounds can be viewed as a singlet
(m,=0), and a doublet level (m = * 1) lying at an energy A
above the singlet. This picture is very similar to one which
considers an Ising model consisting of triplet ions with zero-
field splitting? or an Ising model in the presence of isotropic
bilinear exchange and of crystal-field splitting of the proper
magnitude and sign.?’

Thus, we consider the Blume-Capel model defined by the
following Hamiltonian:
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H:—EJ,:]»O',-O'_,-+A2 0',2, (1)

Gf) i=1

where J;; is the random nearest-neighbor (nn) coupling con-
stant, A is the crystal anisotropy field and the first sum is
over nearest-neighbor pairs on a lattice of N sites. The spin
values o; are —=S,-S+1,...,5-1,S. For Ji=J and S=1/2 we
have the spin-1/2 Ising model and when S=1, H corre-
sponds to the model introduced by Blume?® and Capel.?” It
was introduced by Blume to account for first- and second-
order phase transitions observed in UO, assuming that U**
ion consists of a nonmagnetic single ground state and a low-
lying magnetic triplet, and that only bilinear isotropic ex-
change interactions are present. Capel applied it to the study
of a system consisting of triplet ions with zero-field splitting
and exchange interaction between nearest neighbors. This
model is also used to describe tricritical phenomena ob-
served in the metamagnetic system Ni(NO;),-2H,0,
He-*He mixtures,’! the behavior of superconductor films,3?
Dysprosium Aluminum Garnet (DAG),* and a long list of
other systems. Since no exact solution is known for d=2
dimensions, this model has been extensively studied within
several approximate schemes such as mean-field
approximation,%’27 Monte Carlo simulations,?*3> renormal-
ization group methods,*37 and conformal invariance,’3
among others.

The randomness in this model comes by assigning a prob-
ability distribution for the exchange interactions P(J;;). As is
usual in competing random-bond models, the simple sym-
metric distribution

P(Jy)=pdJ;;=J) +qdlJ; +J), (2)

where p is the probability of having ferromagnetic interac-
tions J and g=1—p is the probability of having antiferromag-
netic interactions —J, is responsible for a symmetric spin-
glass phase in the system. For asymmetric interactions, such
as ferromagnetic interactions J and antiferromagnetic inter-
actions —Jy, for example, the phase diagram has its symmetry
broken regarding p=1/2.

For the particular case of the FeNiMn alloys discussed
above, where p, ¢, and x are the Fe, Ni, and Mn concentra-
tions, respectively, one can consider the following more gen-
eral distribution:

P(]ij) =P2f%]ij—J) +6125(Jij—]1) +x25(-]ij_]2)
+ 2Pq5(1ij—J3) + pr&]ij—h) + ZQX5(Jij—J5),
(3)

where p? is the probability of having two nn Fe atoms with
an exchange interaction J = Jgp., ¢> represents the probabil-
ity between two Ni atoms with J; =Jyn; x> is the bound
probability between Mn atoms having J, = Jyiwv, 2p¢ is the
probability between Fe-Ni atoms with J3=Jg.;, and 2px
and 2¢x represent the probability between Fe-Ni and Ni-Mn
atoms having an exchange J,=Jg.n; and Js=Jyimn, respec-
tively. In this case one also has p+g+x=1.

For the FeAlMn systems, where p,g and x are the Fe, Al,
and Mn concentrations, respectively, we have
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P(Jl]) =p25(‘]ij - J) +X25(J” - Jz) + 2px5(J” - J4)
+q(2-¢q)8(J;), (4)

where p? is the probability of having two nn Fe atoms with
and exchange interaction J=Jp.g., x* represents the prob-
ability between two Mn atoms having an exchange J,
=JMoMn» 2P is the probability between Fe-Mn atoms with
J4=Jpema and the last term, g(2—¢), represents all the pos-
sible diluted bonds with nonmagnetic Al sites (Fe-Al, Mn-
Al, and AI-AI), i.e., J] EJA]AI=07 J3EJF5A1=O and J5
= Jyma1=0, which are given by ¢*+2gp+2gx=q(2-¢q).

In order to get the second-order behavior of this system
we have applied the extended MFRG procedure outlined in
Ref. 36. A brief summary is given in the next section.

III. EXTENDED MFRG METHOD

The Mean-Field Renormalization Group (MFRG)
method*® has been applied to study nonclassical critical
properties of lattice models.*! However, when this method is
applied to the spin —§ Ising model with S= 1, the results are
not equivalent to the Bethe ones and, besides, one gets a
critical temperature 7,.#0 for the one-dimensional
model.***? The extended MFRG is able to provide, using the
smallest cluster, the same results for the critical temperature
as those obtained from Bethe and constant coupling
approximation.**

The extended MFRG method, in treating a magnetic sys-
tem, considers two clusters of interacting spins containing N
and N’ sites, with N'<N. The magnetizations per spin
(order-parameter m={o)) my(K,D,q,b) and
my/(K',D',q",b") are computed for both clusters, where K
is the reduced exchange interaction, D is a parameter of the
Hamiltonian, and ¢ and b are the symmetry-breaking fields.
In the present model we have, for instance, K=£J and D
=pBA, where B=1/kzT with kz the Boltzmann constant.
Close to a second-order phase transition the magnetization of
the system is very small and assuming that b<<1 and b’
<1 we can expand my(K,D,q,b) and my,(K',D’,q',b") up
to first-order in b and b’, respectively, to obtain

my/(K'.D".q",b") = f/(K',D",q")b’, (5)

mN(K’D7q7b)=fN(KaD’q)b' (6)

Using appropriate scaling relation for the approximate mag-
netizations and symmetry-breaking fields, namely, my,
=€%my and b’ =€%b, where £=(N/N")""¢ is the scaling factor
with d the dimension of the lattice and ¢ is the anomalous
dimension of the order parameter, one gets

fN’(K,7D,’q,)=fN(K’D9q)- (7)

Note that for models as the one given by Eq. (1), the
breaking fields ¢ and ¢’ are related to noncritical variables.
In the present case they correspond to the quadrupole quan-
tity 0=(0?). Regarding this quantity as having zero anoma-
lous dimension it means that one has*

QN’(K”D”q”b’=0)=QN(K’D»q’b=O) (8)

and
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q9'=q. 9)

Equations (7)—(9) give the second-order phase transition by
restricting the parameter space to the physical plausible in-
variant subset D’'=D. It should be stressed here that, for
quenched random systems, the magnetizations m and qua-
drupoles Q should also be averaged with respect to the bond
probability distribution.

To study the presence of possible spin-glass phases one
resorts to the Edwards-Anderson order parameter. It is given
by g=(0)?, where the brackets mean the thermal average, as
before, and the overline means the configurational average
over the random bonds. By following the same procedure as
in Refs. 16, 46, and 47 one gets for the spin-glass order-
parameter

gv(K'.D",q",b") = hy/(K',D",q")b"?, (10)

gn(K.D.q.b) = hy(K.,D,q)b*. (11)

Assuming a similar scaling relation gy =€%, and b'?
=£%?, where @ is the anomalous dimension of the spin-glass
order parameter we have

I (K'.D'.q") = hy(K.D.q). (12)

Accordingly, we can also compute the noncritical variable
R={0?)?, from which we arrive at the relation

Ry(K',D',q",b'>=0)=R\(K,D,q,b*=0).  (13)

From Egs. (12), (13), and (9) we get the spin-glass tran-
sition line.

In order to apply the above extended MFRG method to
the model (1) we consider finite systems with one and two
spins. Thus, the Hamiltonian for the one- and two-spin clus-
ters can be written as

z z
Hy==2J|blo+Adi- > qlo7, (14)
i=1 i=1

z—1 z-1
H,=-Jj010,— E Jiibiio = E Joibriory + A(U'% + 0'%)
i=1 i=1
z-1

-2 qilor +03), (15)
i=1

where z is the coordination number of the lattice. In the
above equations by; and b, (n=1,2) are the symmetry-
breaking fields acting at the boundary of the respective clus-
ter, which are related to the magnetization of the system m
=(0), and ¢/ and ¢, are additional parameters related to the
quadrupole Q={c?).

Therefore the magnetizations per spin for the one- and
two-spin clusters are given by

my=(o)y, my={(o), (16)

where the thermal averages are given by
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Tr{ oy e~PM1] _ Tr[ oy e P2]
Tr[e BM] ° 9172= Ti[e BH2] -~

(o = (17)

The corresponding bond distribution averages are computed
from

(F() = f [T d7;PUEW). (18)
ij
Similarly, for the quadrupole one gets
Q1=(o)1, Qa=(0oD), (19)
where
o= Tr[oje PH1] N Tr[ole PH2] 0
< 1>1 Tr[e_BHl] 5 < 1>2 - Tr[e"BH2] . ( )
Regarding the spin-glass phase we have
gi=(o)n, g =(o))3, (21)
and
R] =<O'% %, R2=<O'%>% (22)

Let us consider the spin-1 (S=1) spin-glass Blume-Capel
model with the distribution (2). In this case, it is not so
difficult to compute m,, m,, Q,, and Q, from the Hamilto-
nians (14) and (15). After expanding for small fields »' and
b, and using the MFRG relations (7)—(9) we obtain

2z¢% ~ €% +2pe?2K 1 2(1 — p)e? 2K
-1z, Z

. (23

2¢% 2%+ 46*% cosh(K)
Z, Z, '

(24)

where K=8J, §,=—BA+zBy, 6=—BA+(z—1)By, and the
corresponding partition functions

Zy=1+2¢%, (25)

Z,=1+4e% +4¢>% cosh(K). (26)

Equations (23) and (24) give the ferromagnetic phase bound-
ary for high values of the concentrations p. For small p, we
have more antiferromagnetic bonds and the system will be in
an antiferromagnetic state. However, by considering two
sublattices and treating the sublattice magnetization as order
parameters we arrive at the same Egs. (23) and (24) for the
antiferromagnetic phase boundary with p replaced by ¢. In
other words, the phase diagram of the Hamiltonian (1) is
symmetric regarding p=1/2 for the random distribution (2).

The corresponding spin-glass phase boundary from Egs.
(12), (13), and (9) is given by

ze*% B e>% + 4¢3% cosh(K) + 4¢*% cosh(2K)
z-1z7 7

il

(27)
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FIG. 1. (Color online) Reduced critical temperature as function
of the reduced crystal field for different concentrations. The dashed
line corresponds to the tricritical points.

4% [2¢% + 4> cosh(K) ]
5= 5 . (28)
Z Z
It is interesting to notice that for the symmetric random-bond
distribution (2) the spin-glass transition line is independent
of the concentration p.
For the more general distribution (3) the corresponding
equations for S=1 are given in the Appendix A. Similarly,
the procedure can be extended for spin values > 1.

IV. SYMMETRIC DISTRIBUTION PHASE DIAGRAMS

Before treating the present alloys it is worthwhile to study
the theoretical phase diagram of the spin-glass spin-1 Blume-
Capel model on a three-dimensional simple-cubic lattice (z
=6) according to the distribution (2) from the present ex-
tended MFRG approach. In this case, not only have we re-
sults in the literature for the Ising model to compare with,
but also some recent study of the same model by a different
renormalization group approach.*® As the phase diagram in
this case is symmetric regarding p=1/2, we will present re-
sults only for the ferromagnetic phase.

In Fig. 1 it is shown the reduced critical temperature
(kgT/J) of the second-order ferromagnetic transition line as a
function of the reduced crystal-field (d=A/J) for several
concentrations p. The end of the second-order transition line
is ascribed the tricritical point. For p=1 we recover the pre-
vious diagram of the spin-1 Blume-Capel model according to
the extended MFRG.* There is a critical concentration p,
=2(%_1) which suppresses the second-order transition line
(p.=0.6 for z=6). One can see that the tricritical crystal field
decreases when the concentration decreases from p=1 to
about p=0.7. Then, for smaller values of p, the crystal field
increases. Differently, the tricritical temperature always de-
creases as the concentration of ferromagnetic bonds de-
creases. There is a line of tricritical points as the concentra-
tion changes with no fourth-order point.

Projections of the phase diagram on the reduced tempera-
ture versus concentration of ferromagnetic bonds plane for
several values of the reduced crystal field are depicted in Fig.
2. For the sake of clarity only the ferromagnetic phase-
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FIG. 2. (Color online) Reduced critical temperature as function
of the concentration of ferromagnetic bonds for different crystal-
field values. The dots correspond to the tricritical points. The tric-
ritical point at p=1 occurs for d=2.82.

transition boundaries are shown. As expected, for d— —x
one has the spin-1/2 Ising model with the same results re-
ported in Refs. 16 and 47. As d increases the corresponding
second-order transition line decreases and independently of
the crystal field they go to zero at p,. for d>2.48. For d
<2.16 the transition line is always second order. For 2.16
<d<?2.48 one finds two tricritical points while for 2.48
<d<2.82 there is only one tricritical point. For 2.82<d
<3 we have only first-order transition lines which cannot be
located from the extended MFRG because we do not have
the free energy nor the magnetizations as a function of tem-
perature.

Figure 3 depicts the reduced critical temperature as a
function of concentration of ferromagnetic bonds for several
values of the reduced crystal field including the transition
from the spin-glass phase to the disordered phase. The spin-
glass transition is independent of the concentration for the
symmetric distribution (2). This is not the case when one
considers asymmetric distributions. For d>2.2 there is no
spin-glass phase. The inset in Fig. 3 shows the spin-glass
transition temperature as a function of the crystal field.

5

FIG. 3. (Color online) The same as Fig. 2 including the spin-
glass transition lines which are concentration independent. F stands
for ferromagnetic, P for paramagnetic, and SG for spin-glass
phases. The inset shows the spin-glass transition temperature as a
function of the reduced crystal field.
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The above results are, in some range of the theoretical
parameters, qualitatively the same as those recently reported
for this same model.*® However, we do not find, from our
approach, any inverted tricritical points. Even so, we should
mention that the experimental data do not present any in-
verted tricritical point and we believe that the present ap-
proximation is applicable for the range of theoretical param-
eters we need.

V. FE-NI-MN ALLOYS

Let us now turn our attention to the FeNiMn alloys. In
this case, the S=1 Blume-Capel system can be suitable be-
cause (Fe ¢sNig35);_,Mn, alloys present four states, and this
model can be seen as an approximation to the random axis
model (RAM) to describe amorphous magnetic materials.*’

In order to reproduce the experimental magnetic phase
diagram reported in Ref. 6 for this alloy system, we follow
the S=1 Blume-Capel model according the extended MFRG
method. To obtain the ferromagnetic phase boundary we
used the expressions (A3)-(A6) of Appendix A, correspond-
ing to the calculated magnetizations and to the quadrupoles
for the one and two spins blocks, respectively. Similarly, in
order to obtain the spin-glass boundary we used the expres-
sions (A10)—(A13) of this Appendix, which correspond to
the Edwards-Anderson spin-glass order parameters and to
the quadrupoles for the one and two spins blocks, respec-
tively. In our calculations the value for the parameters are
JEJFeFe=—2.05 meV, Jl EJNiNi: 17.01 meV, JZEJMnMn:
-10.42 meV, J3EJFeNi=5‘92 meV, J4EJFeMn=
—4.63 meV, Js=Jyvpn=-5.32 meV, and A=1 meV. All
these parameters are the same as those adjusted in Ref. 7,
except the last one which was not included in their model.
Two facts can be highlighted here which were also pointed
out in Ref. 7: (1) the AF character of the bounds in which the
Mn atom is present, associated to the large AF character of
the Mn atom and (2) the AF character of the Fe-Fe bond as a
consequence of the shorter nn distance in this fcc phase re-
lated to that of nn atoms in a bee lattice (that of pure Fe).

The experimental and calculated phase boundaries using
the theoretical parameters given above are plotted in Fig. 4,
by dots and solid lines, respectively. For comparison we plot-
ted in this figure, by dotted lines, the previous theoretical
fitting reported in Ref. 7 obtained by using a simple diluted
and random-bond Ising model within the MFRG method for
blocks of one and two spins by considering the distribution
given by Eq. (3). As can be noted in Fig. 4, the current
theoretical boundaries show an excellent agreement with the
experimental data and reproduce very well the four experi-
mental magnetic regions reported experimentally. It can also
be noted that in the previous work’ only the boundaries be-
tween the RSG and F phases, and that between the F and P
phases (for low Mn contents) present good agreement, while
for the boundary between the SG and the P phases the dis-
agreement is clearly apparent. From a closer inspection of
Fig. 4 we have: (i) the F-P transition line from both ap-
proaches are almost the same, except close to the SG region
where the present procedure gives a line almost perpendicu-
lar to the SG phase boundary while the Ising model predicts
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FIG. 4. Phase diagram for (Fe( 45Ni35);_Mn, (ternary system).
The dots represent the experimental data (Ref. 6). The solid line is
obtained by the present extended MFRG on the Blume-Capel model
and the dotted line is the previous fitting from an Ising model (Ref.
7). Except from the crystal field, the parameters are the same for
both models (see the text). The phases are ferromagnetic (f), para-
magnetic (p), spin glass (SG), and reentrant spin glass (RSG).

a reentrancy in the P phase (the bold dotted line is an ex-
trapolation from the full line); (ii) the F-RSG phase boundary
is better fitted from the present BC model and as the Mn
concentration goes to zero the critical temperature is higher
than for the Ising model; (iii) the Ising model gives a SG-P
transition line which almost constant at 7=250 K, in com-
plete disagreement with the experimental data; (iv) finally,
not shown in that Figure for clarity reasons, the Ising model
predicts a phase boundary between the SG and antiferromag-
netic phase which has not been seem for these alloys (see
Fig. 1 of Ref. 7). This can be associated to the crystal field
and to the continuous stabilization of the SG phase due the
increase in the AF bonds induced by the increase in Mn
which compete with the two F ones due to Ni-Ni and Ni-Fe
interactions).

VI. FE-AL-MN ALLOYS

In the preceding sections we have analyzed only the phase
diagrams for the symmetric distribution and applied the
asymmetric one to the ternary FeNiMn alloys phase diagram.
The agreement with the experimental data was remarkable.
Thus, it would be also interesting to see what happens to the
present model when treating the order parameter of the Fe-
AlMn alloys, where the Ising model gave already a good
description of the order-parameter behavior as a function of
the concentrations at room temperature. In this case, how-
ever, the system does not present the spin-glass phase and we
can resort to a variational approach to seek for the disorder
behavior of order parameter. This approach has been used
before (see, for instance, Refs. 7 and 8) so in Appendix B we
just outline the Bogoliubov procedure for the behavior of the
magnetization as a function of temperature and concentra-
tions.

Thus, we considered the distribution function given by
Eq. (4). In addition, we also have to take into account that
the exchange parameter J is a decreasing function of Al con-
centration ¢. This can be achieved by assuming
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Reduced mean hyperfine field
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FIG. 5. Reduced mean hyperfine field as a function of Al con-
centration ¢ at room temperature for Fe concentration p=0.50. Ex-
perimental data (full circles) are from Ref. 9 and the theoretical
fitting from a simple Ising model (dashed line) are from Ref. 12.
The solid line is obtained from the present Blume-Capel model with
Eq. (29) and parameters given in the text.

J(Q)=J1—C]JO, (29)

where J, and J; are parameters to be determined. These pa-
rameters remain constant with the concentration x, as can be
see seen in Figs. 4 and 5 of Ref. 50.

Another expression for J used for the binary FeMn alloys
(¢=0) in the fcc disordered phase is given by the dependence
with Mn concentration x and discussed in,'? namely,

J(x) = J,eo. (30)

where J| is related with J, by the relation Jj=0.05J;.

Here, the order-parameter m;=m,, given in Appendix B,
is related to the mean hyperfine field.”® Figure 5 shows the
experimental results of the reduced mean hyperfine field as a
function of aluminum concentration g at room temperature
for Fe concentration p=0.50 according to the data from Ref.
9. Note that the Mn concentration is given by x=1-p—gq. In
Fig. 5 it is also shown the previous theoretical fitting by
using a simple Ising model from Ref. 12 (dashed line) to-
gether with a fitting by employing the present model (full
line) with the following parameter values: Mn-Mn coupling
Jr=Iviamn=28.92£0.02 meV; Fe-Mn coupling J,=Jgmn
=14.54*+0.02 meV; Fe-Fe coupling J=Jrepe=
-2.29+0.02 meV; and A=2.5+0.1 meV. The fittings have
been obtained by numerically solving Egs. (B7)—-(B12) with
Jo=2.81J; meV and J;=15.3 meV in Eq. (29). In order to
have as less theoretical parameter as possible, the values of
Jy and J; are the same as those used for the simple Ising

TABLE I. Values of the parameters J, J,, J4, and A according to
the Blume-Capel (BC) model, Eq. (29), and also from the Ising (I)
model of Ref. 12.

J I Iy A
(meV) (meV) (meV) (meV)
| 0 15.3 9.6
BC -2.29+0.02 28.92+0.02 14.54 +0.02 2.5
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0.6

0.4

Reduced mean hyperfine field

. 1 . 1 . 1 .
0.5 0.55 0.6 0.65 0.7
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FIG. 6. Reduced mean hyperfine field as a function of Fe con-
centration p at room temperature for Al concentration ¢g=0.10. Ex-
perimental data (full circles) are from Ref. 9 and the theoretical
fitting from a simple Ising model (dashed line) are from Ref. 12.
The solid line is obtained from the present Blume-Capel model with
Eq. (29) and parameters given in the text.

system considered in Ref. 12. Differently from the previous
fittings, where we have just used the theoretical parameters
from Ref. 7 here we have tried some range of the parameters.
So, the errors in the above parameters have been estimated in
such a way that one does not have a significant visual differ-
ence of the corresponding theoretical curve. It can be noticed
that both theoretical curves are almost equivalent when com-
paring to the experimental data. However, within the present
approach, one gets a negative value for J, instead of zero
interaction as in Ref. 12, which is certainly more plausible
than no interaction at all between Fe atoms. Table I shows
the present parameters in comparison to the previous ones.
Similarly, Figs. 6 and 7 show the reduced mean hyperfine
field as a function of iron concentration p for two different Al
concentrations, namely, ¢g=0.1 and ¢=0.05, respectively.
One can see that a rather better fitting is obtained for the Al
concentration g=0.1 and that for g=0.05 both models give
poor agreement with the experimental data. This is indeed a
general trend with both models for small Al concentrations.
In order to get a further comparison for the FeMn binary
system (¢g=0) we have also considered the exchange behav-
ior with Mn according to Eq. (30), where J; has the same
value and J|, has been changed. Figures 8 and 9 show the

o o I
e N 00

Reduced mean hyperfine field

e
)

. 1 . 1 . 1 . . 1 .
0.5 0.55 0.6 0.65 0.7 0.75 0.8
Iron concentration p

FIG. 7. The same as Fig. 6 for g=0.05.

PHYSICAL REVIEW B 80, 014427 (2009)

Reduced mean hyperfine field

1 . 1 . 1 .
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FIG. 8. Reduced mean hyperfine field as a function of Fe con-
centration p at room temperature for Al concentration ¢g=0. Experi-
mental data (full circles) are from Ref. 9 and the theoretical fitting
from a simple Ising model (dashed line) are from Ref. 12. The solid
line is obtained from the present Blume-Capel model with Eq. (30)
and parameters given in the text.

corresponding behavior of the exponential decay of the ex-
change coupling for ¢=0.0 by taking Jj=0 and J,=0.05J},
respectively (and the same value for J, J,, and J,). We can
see that in both cases the fittings obtained by the present BC
model are better than predicted by the simple Ising model.

VII. CONCLUDING REMARKS

The bond disordered Blume-Capel model has been used
to describe the thermodynamic properties of FeNiMn and
FeAlMn magnetic alloys through an approximate scheme
based on a pair approximation. The agreement achieved from
the present approach is far better than the previous one by
taking a simple Ising model. Of course there is still the ques-
tion regarding the applicability of such models since it has
been known that they are suitable to describe the critical
behavior of insulating anisotropic magnetic materials. How-
ever, as the situation for band magnets is still not so clear
because of the lack of theoretical results on models that
could be adequate to real experimental realizations, we be-
lieve that the BC, due to the present good fittings mainly for
the spin-glass phase of FeNiMn alloys, will open a new
venue for the application of such models to other magnetic
systems.
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0 ! . ! . ! . I .

0.5 0.6 0.7 0.8 0.9

Ton concentration p

FIG. 9. The same as Fig. 8 for J;=0.05J;.
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APPENDIX A

In this Appendix we present the analytical results leading
to the second-order ferromagnetic transition line as well as
the Edwards-Anderson spin-glass transition line for the
random-bond distribution (3).

In what follows we have:

BJi=K;, d=BA, q,=zBY, g,=(z—-1)By, (Al)
z z-1 z-1
Iy= 2 K/b!, 1= Kby ©L=2 Kyby,
i=1 i=1 i=1

Zi=1+2cosh(ly), Z,=1+4e%+4e*®cosh(K,).

(A2)
For the magnetizations and quadrupoles we obtain
5
ze“!
=—F, A3
= 2% (43)
S pZWm(K) QZWm(Kl) _XZWm(Kz)
my,=(z-1)e”
Z,(K) Z,(K,) Z5(K>)
2pqW,(K3)  2pxW,,(Ky) 2qum(Ks))
Z)(K3) Z)(Ky) Zy(Ks) )’
(Ad)
s
e 1
=, A5
0= e (43)
0,- PPWUK) @WK KWKy  2pgW,(Ks)
2T Zy(K) Z,(K,) Z,(K>) Z,(K3)
Zp'XWq(K4) 2q-XWq(K5) i (A6)
Z)(Ky) Z)(K5)
where
W, (K) =1 + e cosh(K) + 2¢% sinh(K), (A7)
Z5(K) = 1 + 4e% + 4¢*% cosh(K), (A8)
W,(K) =1+ 2¢* cosh(K). (A9)

For the Edwards-Anderson spin-glass parameter we get

2¢29
Fm, (A10)
o 1)\.25 SW(K) L W(KY)  ,W(K)
hy= (= 1)e (p 2k T2k T Ak
W,(K3) W,(K,) WS(K5)>
Faky TP 2k T Ay ) A
268
- (A12)

R=———,
T (142

PHYSICAL REVIEW B 80, 014427 (2009)

R, = ezﬁz(pz W;(K) 2W¢27(K1) 2W5(K2) qWCZI(K3)
’ 2K DK ZAK) B
WA(K. WA(K.
oYl Wl 5)), (A13)
Z5(Ky) Z5(Ks)
where
W(K) =1 +4e® cosh(K) + 8¢*% cosh(2K). (A14)

APPENDIX B

The pair approximation (PA) based on Bogoliubov in-
equality for the free energy'’ follows closely the procedure
by Ref. 44. The single and pair of spins Hamiltonians are,
respectively, given by

H =-y,0,- 8,01 +Ad7, (B1)

Hy == J;j0105 = y,(0 + 0) = §,(07 + 03) + A0} + 03),
(B2)

where 7,, O, Vps and 6p are variational parameters to be
determined from the condition of minimizing the free-energy

F=F/N=- %kBT In(Zy) = (1 = kT In(Z,)

+ (1 =2)(yym + 8,0) + z2(y,m + 5,0), (B3)

where z=12 for fcc and Z; and Z, are, respectively, the par-

tition functions for single spins and pair of spins
Z,=Ti[e P,  Z,=TiePH]. (B4)

The mean values m={o) and Q=(c>) are obtained from
Hamiltonians H,; and H,, i.e.,

1
m(y,8) =Z; Tiloy exp 1] = EZEI Tr[ (o) + o) PH2],

(BS)

0y, &) =7y Tr(oje 1] = %Zal Til (a7 + 03)eP™],

(B6)

where the configurational average is over the probability dis-
tribution given by Eq. (4). In this case, the minimization of
the free energy with respect to the variational parameters
leads to

(z=Dy=zys, (-1)6=26. (B7)

Equations (B4)—(B6) with the condition (B7) are equivalent
to the Bethe approximation.’” Below we have the expres-
sions for the magnetizations. In what follows one has

z—1
r=——0y, d=BA, K=p8J,
Z

a=pBy; b=pBy. (B8)
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Magnetization

e"~? sinh(a)
" 1+ 2" cosh(a)’
2e”’”‘K[ed +2e™M cosh(ra)]
my=p

Zzp

2erb+aK[ed + 26rb+aK COSh(r(l)]
ZZx

K[ e 4 2™ 7K cosh(ra)]

+2px q2
Z2px

}sinh(ra).

m; (B9)

+ X

rb

e
-q) - (B10)
Zy,
Quadrupole

e’ cosh(a)

T 14260 cosh(a)’

2{ ™M e + 2" cosh(ra)] }
Za,

2{ - e K[ ¢4 4 2¢™ cosh(ra)]
Zy,

{ e K[e? + 2¢™ cosh(ra)] }

Zpr

0 (B11)

PHYSICAL REVIEW B 80, 014427 (2009)

e'® cosh(ra)

+qQ2-q)———, (B12)
qu
where
Zy,=2e"" + "M [e? + 4™ cosh(ra)]
+ 220 cosh(2ra), (B13)
Zy =26 + e *K[e? 1 4e™ cosh(ra)]
+262b+aK) cogh(2ra), (B14)

Zpe=26"" + e[ + 4™ cosh(ra)] + €70 cosh(2ra),

(B15)

Z,, = e’ +2¢™ cosh(ra). (B16)

q

The above procedure has been done for the ferromagnetic
model. Nevertheless, the same equations are obtained for the
antiferromagnetic case where m; and m, are treated as sub-
lattice magnetizations.
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